Search results
Results From The WOW.Com Content Network
The lateral surface area of a right circular cone is = where is the radius of the circle at the bottom of the cone and is the slant height of the cone. [4] The surface area of the bottom circle of a cone is the same as for any circle, . Thus, the total surface area of a right circular cone can be expressed as each of the following:
Map is infinite in extent with outer hemisphere inflating severely, so it is often used as two hemispheres. Maps all small circles to circles, which is useful for planetary mapping to preserve the shapes of craters. c. 150 BC: Orthographic: Azimuthal Perspective Hipparchos* View from an infinite distance. 1740 Vertical perspective: Azimuthal ...
A circle with non-zero geodesic curvature is called a small circle, and is analogous to a circle in the plane. A small circle separates the sphere into two spherical disks or spherical caps, each with the circle as its boundary. For any triple of distinct non-antipodal points a unique small circle passes through all three. Any two points on the ...
The equator is the circle that is equidistant from the North Pole and South Pole. It divides the Earth into the Northern Hemisphere and the Southern Hemisphere. Of the parallels or circles of latitude, it is the longest, and the only 'great circle' (a circle on the surface of the Earth, centered on Earth's center). All the other parallels are ...
Solid hemisphere: r = the radius of the hemisphere Solid semi-ellipsoid of revolution around z-axis: a = the radius of the base circle h = the height of the semi-ellipsoid from the base cicle's center to the edge
In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap.
In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it. Spherical geometry or spherics (from Ancient Greek σφαιρικά ) is the geometry of the two- dimensional surface of a sphere [ a ] or the n -dimensional surface of higher dimensional spheres .
When restricted to the surface of a sphere, the remaining coordinates are confocal spherical conics. Sometimes this is called an elliptic coordinate system on the sphere, by analogy to a planar elliptic coordinate system. Such coordinates can be used in the computation of conformal maps from the sphere to the plane. [4]