Search results
Results From The WOW.Com Content Network
Pascal's law (also Pascal's principle [1] [2] [3] or the principle of transmission of fluid-pressure) is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere. [4]
Pascal made contributions to developments in both hydrostatics and hydrodynamics. Pascal's Law is a fundamental principle of fluid mechanics that states that any pressure applied to the surface of a fluid is transmitted uniformly throughout the fluid in all directions, in such a way that initial variations in pressure are not changed.
Pascal's theorem is the polar reciprocal and projective dual of Brianchon's theorem. It was formulated by Blaise Pascal in a note written in 1639 when he was 16 years old and published the following year as a broadside titled "Essay pour les coniques. Par B. P." [1] Pascal's theorem is a special case of the Cayley–Bacharach theorem.
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [1]: 3 It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.
A set of communicating vessels Animation showing the filling of communicating vessels. Communicating vessels or communicating vases [1] are a set of containers containing a homogeneous fluid and connected sufficiently far below the top of the liquid: when the liquid settles, it balances out to the same level in all of the containers regardless of the shape and volume of the containers.
The Mizar Project was started around 1973 by Andrzej Trybulec as an attempt to reconstruct mathematical vernacular so it can be checked by a computer. [3] Its current goal, apart from the continual development of the Mizar System, is the collaborative creation of a large library of formally verified proofs, covering most of the core of modern mathematics.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Sylvester's law of inertia (quadratic forms) Sylvester–Gallai theorem (plane geometry) Symmetric hypergraph theorem (graph theory) Symphonic theorem (triangle geometry) Synge's theorem (Riemannian geometry) Sz.-Nagy's dilation theorem (operator theory) Szegő limit theorems (mathematical analysis) Szemerédi's theorem (combinatorics)