Search results
Results From The WOW.Com Content Network
Pascal's law (also Pascal's principle [1] [2] [3] or the principle of transmission of fluid-pressure) is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere. [4]
Pascal made contributions to developments in both hydrostatics and hydrodynamics. Pascal's Law is a fundamental principle of fluid mechanics that states that any pressure applied to the surface of a fluid is transmitted uniformly throughout the fluid in all directions, in such a way that initial variations in pressure are not changed.
Pascal's theorem is the polar reciprocal and projective dual of Brianchon's theorem. It was formulated by Blaise Pascal in a note written in 1639 when he was 16 years old and published the following year as a broadside titled "Essay pour les coniques. Par B. P." [1] Pascal's theorem is a special case of the Cayley–Bacharach theorem.
Second, Pascal notes, this people possesses the most ancient law the world knows—a law the great ancient Jewish-Greek authors, Philo and Josephus, argued had been observed for a thousand years ...
The hydraulic press depends on Pascal's principle.The pressure throughout a closed system is constant. One part of the system is a piston acting as a pump, with a modest mechanical force acting on a small cross-sectional area; the other part is a piston with a larger area which generates a correspondingly large mechanical force.
[11] Another example is a knife. If the flat edge is used, force is distributed over a larger surface area resulting in less pressure, and it will not cut. Whereas using the sharp edge, which has less surface area, results in greater pressure, and so the knife cuts smoothly. This is one example of a practical application of pressure. [12]
The theoretical derivation of a slightly different form of the law was made independently by Wiedman in 1856 and Neumann and E. Hagenbach in 1858 (1859, 1860). Hagenbach was the first who called this law Poiseuille's law. The law is also very important in hemorheology and hemodynamics, both fields of physiology. [10]
This is an accepted version of this page This is the latest accepted revision, reviewed on 14 January 2025. Law of physics and chemistry This article is about the law of conservation of energy in physics. For sustainable energy resources, see Energy conservation. Part of a series on Continuum mechanics J = − D d φ d x {\displaystyle J=-D{\frac {d\varphi }{dx}}} Fick's laws of diffusion Laws ...