When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. [1] The activation energy ( E a ) of a reaction is measured in kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). [ 2 ]

  3. Arrhenius plot - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_plot

    Arrhenius plots are often used to analyze the effect of temperature on the rates of chemical reactions. For a single rate-limited thermally activated process, an Arrhenius plot gives a straight line, from which the activation energy and the pre-exponential factor can both be determined.

  4. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    For any reaction to proceed, the starting material must have enough energy to cross over an energy barrier. This energy barrier is known as activation energy (∆G ≠) and the rate of reaction is dependent on the height of this barrier. A low energy barrier corresponds to a fast reaction and high energy barrier corresponds to a slow reaction.

  5. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    The free energy of activation, ΔG ‡, is defined in transition state theory to be the energy such that ‡ = ⁡ ‡ ′ holds. The parameters Δ H ‡ and Δ S ‡ can then be inferred by determining Δ G ‡ = Δ H ‡ – T Δ S ‡ at different temperatures.

  6. Reaction coordinate - Wikipedia

    en.wikipedia.org/wiki/Reaction_coordinate

    Diagram of a catalytic reaction, showing the energy level as a function of the reaction coordinate. For a catalyzed reaction, the activation energy is lower.. In chemistry, a reaction coordinate [1] is an abstract one-dimensional coordinate chosen to represent progress along a reaction pathway.

  7. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    The general form of the Eyring–Polanyi equation somewhat resembles the Arrhenius equation: = ‡ where is the rate constant, ‡ is the Gibbs energy of activation, is the transmission coefficient, is the Boltzmann constant, is the temperature, and is the Planck constant.

  8. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    Uncatalysed (dashed line), substrates need a lot of activation energy to reach a transition state, which then decays into lower-energy products. When enzyme catalysed (solid line), the enzyme binds the substrates (ES), then stabilizes the transition state (ES ‡) to reduce the activation energy required to produce products (EP) which are ...

  9. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    As shown on the right, enzymes with a substituted-enzyme mechanism can exist in two states, E and a chemically modified form of the enzyme E*; this modified enzyme is known as an intermediate. In such mechanisms, substrate A binds, changes the enzyme to E* by, for example, transferring a chemical group to the active site, and is then released.