When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    If the limit exists then the function is said to be integrable (or more specifically Riemann-integrable). The Riemann sum can be made as close as desired to the Riemann integral by making the partition fine enough. [3] One important requirement is that the mesh of the partitions must become smaller and smaller, so that it has the limit zero.

  3. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    Thomae mentioned it as an example for an integrable function with infinitely many discontinuities in an early textbook on Riemann's notion of integration. [ 4 ] Since every rational number has a unique representation with coprime (also termed relatively prime) p ∈ Z {\displaystyle p\in \mathbb {Z} } and q ∈ N {\displaystyle q\in \mathbb {N ...

  4. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    A bounded function, , is Riemann integrable on [,] if and only if the correspondent set of all essential discontinuities of first kind of has Lebesgue's measure zero. The case where E 1 = ∅ {\displaystyle E_{1}=\varnothing } correspond to the following well-known classical complementary situations of Riemann integrability of a bounded ...

  5. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    The given functions (f, g) may be discontinuous, provided that they are locally integrable (on the given interval). In this case, Lebesgue integration is meant, the conclusions hold almost everywhere (thus, in all continuity points), and differentiability of g is interpreted as local absolute continuity (rather than continuous differentiability).

  6. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    The Dirichlet function is not Riemann-integrable on any segment of despite being bounded because the set of its discontinuity points is not negligible (for the Lebesgue measure). The Dirichlet function provides a counterexample showing that the monotone convergence theorem is not true in the context of the Riemann integral.

  7. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    Every continuous function : [,] is integrable (for example in the sense of the Riemann integral). The converse does not hold, as the (integrable but discontinuous) sign function shows. Pointwise and uniform limits

  8. Riemann–Stieltjes integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Stieltjes_integral

    The Riemann–Stieltjes integral appears in the original formulation of F. Riesz's theorem which represents the dual space of the Banach space C[a,b] of continuous functions in an interval [a,b] as Riemann–Stieltjes integrals against functions of bounded variation. Later, that theorem was reformulated in terms of measures.

  9. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Then f is a non-decreasing function on [a, b], which is continuous except for jump discontinuities at x n for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions. [8] [9]