Ads
related to: distance between two lines google maps
Search results
Results From The WOW.Com Content Network
The straight-line distance between the central point on the map to any other point is the same as the straight-line 3D distance through the globe between the two points. c. 150 BC: Stereographic: Azimuthal Conformal Hipparchos* Map is infinite in extent with outer hemisphere inflating severely, so it is often used as two hemispheres.
The distinction between rhumb (sailing) distance and great circle (true) distance was clearly understood by Mercator. (See Legend 12 on the 1569 map.) He stressed that the rhumb line distance is an acceptable approximation for true great circle distance for courses of short or moderate distance, particularly at lower latitudes.
Distance from the tangent point on the map is proportional to straight-line distance through the Earth: r(d) = c sin d / 2R [38] Logarithmic azimuthal is constructed so that each point's distance from the center of the map is the logarithm of its distance from the tangent point on the Earth.
Because the lines are parallel, the perpendicular distance between them is a constant, so it does not matter which point is chosen to measure the distance. Given the equations of two non-vertical parallel lines = + = +, the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular ...
On a Mercator projection map, any rhumb line is a straight line; a rhumb line can be drawn on such a map between any two points on Earth without going off the edge of the map. But theoretically a loxodrome can extend beyond the right edge of the map, where it then continues at the left edge with the same slope (assuming that the map covers ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
The shortest distance between two points in plane is a Cartesian straight line. The Pythagorean theorem is used to calculate the distance between points in a plane. Even over short distances, the accuracy of geographic distance calculations which assume a flat Earth depend on the method by which the latitude and longitude coordinates have been ...
d is the distance between the two points along a great circle of the sphere (see spherical distance), r is the radius of the sphere. The haversine formula allows the haversine of θ to be computed directly from the latitude (represented by φ) and longitude (represented by λ) of the two points: