When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    The bootstrap sample is taken from the original by using sampling with replacement (e.g. we might 'resample' 5 times from [1,2,3,4,5] and get [2,5,4,4,1]), so, assuming N is sufficiently large, for all practical purposes there is virtually zero probability that it will be identical to the original "real" sample. This process is repeated a large ...

  3. Margin of error - Wikipedia

    en.wikipedia.org/wiki/Margin_of_error

    Consider a simple yes/no poll as a sample of respondents drawn from a population , reporting the percentage of yes responses. We would like to know how close p {\displaystyle p} is to the true result of a survey of the entire population N {\displaystyle N} , without having to conduct one.

  4. Bootstrap error-adjusted single-sample technique - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_error-adjusted...

    In statistics, the bootstrap error-adjusted single-sample technique (BEST or the BEAST) is a non-parametric method that is intended to allow an assessment to be made of the validity of a single sample. It is based on estimating a probability distribution representing what can be expected from valid samples. [1]

  5. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    If ′ =, then for large the set is expected to have the fraction (1 - 1/e) (~63.2%) of the unique samples of , the rest being duplicates. [1] This kind of sample is known as a bootstrap sample. Sampling with replacement ensures each bootstrap is independent from its peers, as it does not depend on previous chosen samples when sampling.

  6. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    This point can be illustrated with a simple example: Assume no predictive variables and where the proportion of = is 0.01 and the proportion of = is 0.99. Is a model which learns P ^ ( Y = 1 ) = 0.01 {\displaystyle {\hat {P}}(Y=1)=0.01} useless and should be modified via undersampling or oversampling?

  7. Ratio estimator - Wikipedia

    en.wikipedia.org/wiki/Ratio_estimator

    Under simple random sampling the bias is of the order O( n −1). An upper bound on the relative bias of the estimate is provided by the coefficient of variation (the ratio of the standard deviation to the mean). [2] Under simple random sampling the relative bias is O( n −1/2).

  8. Sampling error - Wikipedia

    en.wikipedia.org/wiki/Sampling_error

    Since the sample does not include all members of the population, statistics of the sample (often known as estimators), such as means and quartiles, generally differ from the statistics of the entire population (known as parameters).

  9. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...