Search results
Results From The WOW.Com Content Network
An example of a proton pump that is not electrogenic, is the proton/potassium pump of the gastric mucosa which catalyzes a balanced exchange of protons and potassium ions. [citation needed] The combined transmembrane gradient of protons and charges created by proton pumps is called an electrochemical gradient.
An ion gradient has potential energy and can be used to power chemical reactions when the ions pass through a channel (red). Hydrogen ions, or protons, will diffuse from a region of high proton concentration to a region of lower proton concentration, and an electrochemical concentration gradient of protons across a membrane can be harnessed to ...
The protons return to the mitochondrial matrix through the protein ATP synthase. The energy is used in order to rotate ATP synthase which facilitates the passage of a proton, producing ATP. A pH difference between the matrix and intermembrane space creates an electrochemical gradient by which ATP synthase can pass a proton into the matrix ...
An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts: The chemical gradient, or difference in solute concentration across a membrane. The electrical gradient, or difference in charge across a membrane.
The microelectrode method for measuring pH i consists of placing a very small electrode into the cell’s cytosol by making a very small hole in the plasma membrane of the cell. [19] Since the microelectrode has fluid with a high H+ concentration inside, relative to the outside of the electrode, there is a potential created due to the pH ...
ATP synthase lies across a cellular membrane and forms an aperture that protons can cross from areas of high concentration to areas of low concentration, imparting energy for the synthesis of ATP. This electrochemical gradient is generated by the electron transport chain and allows cells to store
In cyclic electron transfer, electrons are removed from an excited chlorophyll molecule, passed through an electron transport chain to a proton pump, and then returned to the chlorophyll. The mobile electron carriers are, as usual, a lipid-soluble quinone and a water-soluble cytochrome. The resulting proton gradient is used to make ATP.
H+-ATPase energizes nutrient uptake by establishing an electrochemical proton gradient that will drive secondary active transport. H+-ATPase uses the energy of ATP to pump H+ protons out of the cytoplasm of the cell. [13] This creates and maintains an electrochemical gradient of H+ from outside the cell to inside the cell.