Search results
Results From The WOW.Com Content Network
The dimensionless Reynolds number is an important parameter in the equations that describe whether fully developed flow conditions lead to laminar or turbulent flow. The Reynolds number is the ratio of the inertial force to the shearing force of the fluid: how fast the fluid is moving relative to how viscous it is, irrespective of the scale of ...
where Re is the Reynolds number, ρ is the fluid density, and v is the mean flow velocity, which is half the maximal flow velocity in the case of laminar flow. It proves more useful to define the Reynolds number in terms of the mean flow velocity because this quantity remains well defined even in the case of turbulent flow, whereas the maximal ...
The mean streamwise velocity profile + is improved for + < with an eddy viscosity formulation based on a near-wall turbulent kinetic energy + function and the van Driest mixing length equation. Comparisons with DNS data of fully developed turbulent channel flows for 109 < R e τ < 2003 {\displaystyle 109<Re_{\tau }<2003} showed good agreement.
With respect to laminar and turbulent flow regimes: laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, and is characterized by smooth, constant fluid motion; turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces, which tend to produce chaotic eddies, vortices and other flow instabilities.
Also of interest is the velocity profile shape which is useful in differentiating laminar from turbulent boundary layer flows. The profile shape refers to the y-behavior of the velocity profile as it transitions to u e (x). Figure 1: Schematic drawing depicting fluid flow entering the bottom half of a 2-D channel with plate-to-plate spacing of H.
The equations governing turbulent flows can only be solved directly for simple cases of flow. For most real-life turbulent flows, CFD simulations use turbulent models to predict the evolution of turbulence. These turbulence models are simplified constitutive equations that predict the statistical evolution of turbulent flows. [1]
A schematic diagram of the Blasius flow profile. The streamwise velocity component () / is shown, as a function of the similarity variable .. Using scaling arguments, Ludwig Prandtl [1] argued that about half of the terms in the Navier-Stokes equations are negligible in boundary layer flows (except in a small region near the leading edge of the plate).
where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...