Search results
Results From The WOW.Com Content Network
483: 48 − (3 × 9) = 21 = 7 × 3. Adding 3 times the first digit to the next and then writing the rest gives a multiple of 7. (This works because 10a + b − 7a = 3a + b; the last number has the same remainder as 10a + b.) 483: 4 × 3 + 8 = 20, 203: 2 × 3 + 0 = 6, 63: 6 × 3 + 3 = 21. Adding the last two digits to twice the rest gives a ...
The elements 2 and 1 + √ −3 are two maximal common divisors (that is, any common divisor which is a multiple of 2 is associated to 2, the same holds for 1 + √ −3, but they are not associated, so there is no greatest common divisor of a and b.
For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n , then so is − m . The tables below only list positive divisors.
7 is a divisor of 42 because =, so we can say It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2, 3, −3.
For example, 6 and 35 factor as 6 = 2 × 3 and 35 = 5 × 7, so they are not prime, but their prime factors are different, so 6 and 35 are coprime, with no common factors other than 1. A 24×60 rectangle is covered with ten 12×12 square tiles, where 12 is the GCD of 24 and 60.
The integer 5 is a unitary divisor of 60, because 5 and = have only 1 as a common factor. On the contrary, 6 is a divisor but not a unitary divisor of 60, as 6 and 60 6 = 10 {\displaystyle {\frac {60}{6}}=10} have a common factor other than 1, namely 2.
Discover the latest breaking news in the U.S. and around the world — politics, weather, entertainment, lifestyle, finance, sports and much more.
That 641 is a factor of F 5 can be deduced from the equalities 641 = 2 7 × 5 + 1 and 641 = 2 4 + 5 4. It follows from the first equality that 2 7 × 5 ≡ −1 (mod 641) and therefore (raising to the fourth power) that 2 28 × 5 4 ≡ 1 (mod 641).