Search results
Results From The WOW.Com Content Network
Information about this dataset's format is available in the HuggingFace dataset card and the project's website. The dataset can be downloaded here, and the rejected data here. 2016 [343] Paperno et al. FLAN A re-preprocessed version of the FLAN dataset with updates since the original FLAN dataset was released is available in Hugging Face: test data
huggingface.co Hugging Face is a French-American company that develops computation tools for building applications using machine learning . It is known for its transformers library built for natural language processing applications.
The Pile is an 886.03 GB diverse, open-source dataset of English text created as a training dataset for large language models (LLMs). It was constructed by EleutherAI in 2020 and publicly released on December 31 of that year. [1] [2] It is composed of 22 smaller datasets, including 14 new ones. [1]
The following examples are taken from the "Abstract Algebra" and "International Law" tasks, respectively. [3]The correct answers are marked in boldface: Find all in such that [] / (+) is a field.
GPT-2 was pre-trained on a dataset of 8 million web pages. [2] It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [3] [4] [5] GPT-2 was created as a "direct scale-up" of GPT-1 [6] with a ten-fold increase in both its parameter count and the size of its training dataset. [5]
Stable Diffusion was trained on pairs of images and captions taken from LAION-5B, a publicly available dataset derived from Common Crawl data scraped from the web, where 5 billion image-text pairs were classified based on language and filtered into separate datasets by resolution, a predicted likelihood of containing a watermark, and predicted ...
BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [3]
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]