Search results
Results From The WOW.Com Content Network
There u replaces v 0 and s replaces r - r 0. They are often referred to as the SUVAT equations, where "SUVAT" is an acronym from the variables: s = displacement, u = initial velocity, v = final velocity, a = acceleration, t = time. [10] [11] In these variables, the equations of motion would be written
Q-vectors are used in atmospheric dynamics to understand physical processes such as vertical motion and frontogenesis. Q-vectors are not physical quantities that can be measured in the atmosphere but are derived from the quasi-geostrophic equations and can be used in the previous diagnostic situations. On meteorological charts, Q-vectors point ...
v is the velocity at which the projectile is launched; g is the gravitational acceleration—usually taken to be 9.81 m/s 2 (32 f/s 2) near the Earth's surface; θ is the angle at which the projectile is launched; y 0 is the initial height of the projectile
In projectile motion, the horizontal motion and the vertical motion are independent of each other; that is, neither motion affects the other. This is the principle of compound motion established by Galileo in 1638, [1] and used by him to prove the parabolic form of projectile motion. [2]
Conservation of momentum: Consisting of a form of the Navier–Stokes equations that describe hydrodynamical flow on the surface of a sphere under the assumption that vertical motion is much smaller than horizontal motion (hydrostasis) and that the fluid layer depth is small compared to the radius of the sphere
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
The equations of motion describe the movement of the center of mass of a body, ... vertical loop: 100 mm/s 2 0.010 g: 400 mm/s 2 0.041 g: 2.5 m/s 2 0.25 g: 10 m/s 2 1 ...
Kapitza's pendulum or Kapitza pendulum is a rigid pendulum in which the pivot point vibrates in a vertical direction, up and down. It is named after Russian Nobel Prize laureate physicist Pyotr Kapitza , who in 1951 developed a theory which successfully explains some of its unusual properties. [ 1 ]