Search results
Results From The WOW.Com Content Network
The following outline is provided as an overview of and topical guide to fluid dynamics: . In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases.
In fluid dynamics, the Coriolis–Stokes force is a forcing of the mean flow in a rotating fluid due to interaction of the Coriolis effect and wave-induced Stokes drift. This force acts on water independently of the wind stress. [1] This force is named after Gaspard-Gustave Coriolis and George Gabriel Stokes, two nineteenth-century scientists.
Free film lubrication theory is concerned with the case in which one of the surfaces containing the fluid is a free surface. In that case, the position of the free surface is itself unknown, and one goal of lubrication theory is then to determine this. Examples include the flow of a viscous fluid over an inclined plane or over topography.
The study of momentum transfer, or fluid mechanics can be divided into two branches: fluid statics (fluids at rest), and fluid dynamics (fluids in motion). When a fluid is flowing in the x-direction parallel to a solid surface, the fluid has x-directed momentum, and its concentration is υ x ρ .
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion).
In the field of fluid dynamics, a Rankine half body is a feature of fluid flow discovered by Scottish physicist and engineer William Rankine that is formed when a fluid source is added to a fluid undergoing potential flow. Superposition of uniform flow and source flow yields the Rankine half body flow.
A direct numerical simulation (DNS) [1] [2] is a simulation in computational fluid dynamics (CFD) in which the Navier–Stokes equations are numerically solved without any turbulence model. This means that the whole range of spatial and temporal scales of the turbulence must be resolved.
Wave characteristics. In fluid dynamics, the Ursell number indicates the nonlinearity of long surface gravity waves on a fluid layer. This dimensionless parameter is named after Fritz Ursell, who discussed its significance in 1953.