Ad
related to: number of injective functions formula in excel spreadsheet calculator example
Search results
Results From The WOW.Com Content Network
In mathematics, an injective function (also known as injection, or one-to-one function [1]) is a function f that maps distinct elements of its domain to distinct elements of its codomain; that is, x 1 ≠ x 2 implies f(x 1) ≠ f(x 2) (equivalently by contraposition, f(x 1) = f(x 2) implies x 1 = x 2).
Injective composition: the second function need not be injective. A function is injective (one-to-one) if each possible element of the codomain is mapped to by at most one argument. Equivalently, a function is injective if it maps distinct arguments to distinct images. An injective function is an injection. [1] The formal definition is the ...
The function f is injective if and only if each horizontal line intersects the graph at most once. In this case the graph is said to pass the horizontal line test. If any horizontal line intersects the graph more than once, the function fails the horizontal line test and is not injective. [2]
A spreadsheet's concatenation ("&") function can be used to assemble complex text strings in a single cell (in this example, XML code for an SVG "circle" element). This concatenation is a variation of the chaining of formulas, for which spreadsheets are commonly used.
sc is a cross-platform, free, TUI, spreadsheet and calculator application that runs on Unix and Unix-like operating systems. It has also been ported to Windows. It can be accessed through a terminal emulator, and has a simple interface and keyboard shortcuts resembling the key bindings of the Vim text editor. It can be used in a similar manner ...
If there is a surjection from A to B that is not injective, then no surjection from A to B is injective. In fact no function of any kind from A to B is injective. This is not true for infinite sets: Consider the function on the natural numbers that sends 1 and 2 to 1, 3 and 4 to 2, 5 and 6 to 3, and so on.
Every injective function is locally injective but not conversely. Local diffeomorphisms, local homeomorphisms, and smooth immersions are all locally injective functions that are not necessarily injective. The inverse function theorem gives a sufficient condition for a continuously differentiable function to be (among other things) locally ...
In set theory, the Schröder–Bernstein theorem states that, if there exist injective functions f : A → B and g : B → A between the sets A and B, then there exists a bijective function h : A → B. In terms of the cardinality of the two sets, this classically implies that if | A | ≤ | B | and | B | ≤ | A |, then | A | = | B |; that is ...