Search results
Results From The WOW.Com Content Network
Conversely, precision can be lost when converting representations from integer to floating-point, since a floating-point type may be unable to exactly represent all possible values of some integer type. For example, float might be an IEEE 754 single precision type, which cannot represent the integer 16777217 exactly, while a 32-bit integer type ...
UCHAR_MAX, USHRT_MAX, UINT_MAX, ULONG_MAX, ULLONG_MAX(C99) – maximum possible value of unsigned integer types: unsigned char, unsigned short, unsigned int, unsigned long, unsigned long long; CHAR_MIN – minimum possible value of char; CHAR_MAX – maximum possible value of char; MB_LEN_MAX – maximum number of bytes in a multibyte character
This type is not supported by compilers that require C code to be compliant with the previous C++ standard, C++03, because the long long type did not exist in C++03. For an ANSI/ISO compliant compiler, the minimum requirements for the specified ranges, that is, −(2 63 −1) [ 11 ] to 2 63 −1 for signed and 0 to 2 64 −1 for unsigned, [ 12 ...
The DWARF file format uses both unsigned and signed LEB128 encoding for various fields. [2] LLVM, in its Coverage Mapping Format [8] LLVM's implementation of LEB128 encoding and decoding is useful alongside the pseudocode above. [9].NET supports a "7-bit encoded int" format in the BinaryReader and BinaryWriter classes. [10]
In C and C++ short, long, and long long types are required to be at least 16, 32, and 64 bits wide, respectively, but can be more. The int type is required to be at least as wide as short and at most as wide as long , and is typically the width of the word size on the processor of the machine (i.e. on a 32-bit machine it is often 32 bits wide ...
If the source of the operation is an unsigned number, then zero extension is usually the correct way to move it to a larger field while preserving its numeric value, while sign extension is correct for signed numbers. In the x86 and x64 instruction sets, the movzx instruction ("move with zero extension") performs this function.
A variable-length quantity (VLQ) is a universal code that uses an arbitrary number of binary octets (eight-bit bytes) to represent an arbitrarily large integer. A VLQ is essentially a base-128 representation of an unsigned integer with the addition of the eighth bit to mark continuation of bytes. VLQ is identical to LEB128 except in endianness ...
(A, C, E, and F zones indicate positive values, B and D negative). The PACK instruction on IBM System/360 architecture machines converts the sign of a zoned decimal number when converting to packed decimal , and the corresponding UNPK instruction will set the correct overpunched sign of its zoned decimal output.