Search results
Results From The WOW.Com Content Network
A structure similar to LCGs, but not equivalent, is the multiple-recursive generator: X n = (a 1 X n−1 + a 2 X n−2 + ··· + a k X n−k) mod m for k ≥ 2. With a prime modulus, this can generate periods up to m k −1, so is a useful extension of the LCG structure to larger periods.
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
In mathematics and computer science, Recamán's sequence [1] [2] is a well known sequence defined by a recurrence relation.Because its elements are related to the previous elements in a straightforward way, they are often defined using recursion.
In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.
is constant-recursive because it satisfies the linear recurrence = +: each number in the sequence is the sum of the previous two. [2] Other examples include the power of two sequence 1 , 2 , 4 , 8 , 16 , … {\displaystyle 1,2,4,8,16,\ldots } , where each number is the sum of twice the previous number, and the square number sequence 0 , 1 , 4 ...
In mathematics and computer science, mutual recursion is a form of recursion where two mathematical or computational objects, such as functions or datatypes, are defined in terms of each other. [1] Mutual recursion is very common in functional programming and in some problem domains, such as recursive descent parsers, where the datatypes are ...
In numerical analysis, the Clenshaw algorithm, also called Clenshaw summation, is a recursive method to evaluate a linear combination of Chebyshev polynomials. [1] [2] The method was published by Charles William Clenshaw in 1955. It is a generalization of Horner's method for evaluating a linear combination of monomials.
But that would be a contradiction, since in a number = lcm (,) of step, both and would be returning, against the hypothesis that only was. Thus, the non-returning portion of the starting volume cannot be the empty set, i.e. all D 1 {\displaystyle D_{1}} is recurring after some number of steps.