When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    A structure similar to LCGs, but not equivalent, is the multiple-recursive generator: X n = (a 1 X n−1 + a 2 X n−2 + ··· + a k X n−k) mod m for k ≥ 2. With a prime modulus, this can generate periods up to m k −1, so is a useful extension of the LCG structure to larger periods.

  3. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  4. Recamán's sequence - Wikipedia

    en.wikipedia.org/wiki/Recamán's_sequence

    In mathematics and computer science, Recamán's sequence [1] [2] is a well known sequence defined by a recurrence relation.Because its elements are related to the previous elements in a straightforward way, they are often defined using recursion.

  5. Corecursion - Wikipedia

    en.wikipedia.org/wiki/Corecursion

    In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.

  6. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    is constant-recursive because it satisfies the linear recurrence = +: each number in the sequence is the sum of the previous two. [2] Other examples include the power of two sequence 1 , 2 , 4 , 8 , 16 , … {\displaystyle 1,2,4,8,16,\ldots } , where each number is the sum of twice the previous number, and the square number sequence 0 , 1 , 4 ...

  7. Mutual recursion - Wikipedia

    en.wikipedia.org/wiki/Mutual_recursion

    In mathematics and computer science, mutual recursion is a form of recursion where two mathematical or computational objects, such as functions or datatypes, are defined in terms of each other. [1] Mutual recursion is very common in functional programming and in some problem domains, such as recursive descent parsers, where the datatypes are ...

  8. Clenshaw algorithm - Wikipedia

    en.wikipedia.org/wiki/Clenshaw_algorithm

    In numerical analysis, the Clenshaw algorithm, also called Clenshaw summation, is a recursive method to evaluate a linear combination of Chebyshev polynomials. [1] [2] The method was published by Charles William Clenshaw in 1955. It is a generalization of Horner's method for evaluating a linear combination of monomials.

  9. Poincaré recurrence theorem - Wikipedia

    en.wikipedia.org/wiki/Poincaré_recurrence_theorem

    But that would be a contradiction, since in a number = lcm (,) of step, both and would be returning, against the hypothesis that only was. Thus, the non-returning portion of the starting volume cannot be the empty set, i.e. all D 1 {\displaystyle D_{1}} is recurring after some number of steps.

  1. Related searches lcm using recursion in c++ 1 and 2 series test examples pdf format

    lcm using recursion in c++ 1 and 2 series test examples pdf format free