When.com Web Search

  1. Ads

    related to: calculation of kurtosis in excel examples

Search results

  1. Results From The WOW.Com Content Network
  2. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    Excess kurtosis, typically compared to a value of 0, characterizes the “tailedness” of a distribution. A univariate normal distribution has an excess kurtosis of 0. Negative excess kurtosis indicates a platykurtic distribution, which doesn’t necessarily have a flat top but produces fewer or less extreme outliers than the normal distribution.

  3. Normal probability plot - Wikipedia

    en.wikipedia.org/wiki/Normal_probability_plot

    The normal probability plot is a graphical technique to identify substantive departures from normality.This includes identifying outliers, skewness, kurtosis, a need for transformations, and mixtures.

  4. Beta distribution - Wikipedia

    en.wikipedia.org/wiki/Beta_distribution

    The plot of excess kurtosis as a function of the variance and the mean shows that the minimum value of the excess kurtosis (−2, which is the minimum possible value for excess kurtosis for any distribution) is intimately coupled with the maximum value of variance (1/4) and the symmetry condition: the mean occurring at the midpoint (μ = 1/2).

  5. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  6. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    Examples are maximum one-day rainfalls and the time a user spends on a web page. The distribution is named after Swedish mathematician Waloddi Weibull , who described it in detail in 1939, [ 1 ] [ 2 ] although it was first identified by René Maurice Fréchet and first applied by Rosin & Rammler (1933) to describe a particle size distribution .

  7. D'Agostino's K-squared test - Wikipedia

    en.wikipedia.org/wiki/D'Agostino's_K-squared_test

    The sample skewness g 1 and kurtosis g 2 are both asymptotically normal. However, the rate of their convergence to the distribution limit is frustratingly slow, especially for g 2 . For example even with n = 5000 observations the sample kurtosis g 2 has both the skewness and the kurtosis of approximately 0.3, which is not negligible.

  8. Cokurtosis - Wikipedia

    en.wikipedia.org/wiki/Cokurtosis

    Let X and Y each be normally distributed with correlation coefficient ρ. The cokurtosis terms are (,,,) = +(,,,) = (,,,) =Since the cokurtosis depends only on ρ, which is already completely determined by the lower-degree covariance matrix, the cokurtosis of the bivariate normal distribution contains no new information about the distribution.

  9. Shape parameter - Wikipedia

    en.wikipedia.org/wiki/Shape_parameter

    Most simply, they can be estimated in terms of the higher moments, using the method of moments, as in the skewness (3rd moment) or kurtosis (4th moment), if the higher moments are defined and finite. Estimators of shape often involve higher-order statistics (non-linear functions of the data), as in the higher moments, but linear estimators also ...