Search results
Results From The WOW.Com Content Network
The yield strength is the point at which elastic deformation ... Careful note should be taken of the relationship between a hardness number and the stress-strain ...
Hollomon's equation is a power law relationship between the stress and the amount of plastic strain: [10] = where σ is the stress, K is the strength index or strength coefficient, ε p is the plastic strain and n is the strain hardening exponent.
The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...
The Brinell hardness number can be correlated with the ultimate tensile strength (UTS), although the relationship is dependent on the material, and therefore determined empirically. The relationship is based on Meyer's index (n) from Meyer's law. If Meyer's index is less than 2.2 then the ratio of UTS to BHN is 0.36.
In engineering, shear strength is the strength of a material or component against the type of yield or structural failure when the material or component fails in shear. A shear load is a force that tends to produce a sliding failure on a material along a plane that is parallel to the direction of the force. When a paper is cut with scissors ...
The unit of hardness given by the test is known as the Vickers Pyramid Number (HV) or Diamond Pyramid Hardness (DPH). The hardness number can be converted into units of pascals, but should not be confused with pressure, which uses the same units. The hardness number is determined by the load over the surface area of the indentation and not the ...
Hence, the hardness and strength (both yield and tensile) critically depend on the ease with which dislocations move. Pinning points , or locations in the crystal that oppose the motion of dislocations, [ 5 ] can be introduced into the lattice to reduce dislocation mobility, thereby increasing mechanical strength.
There is an inverse relationship between delta yield strength and grain size to some power, x. where k is the strengthening coefficient and both k and x are material specific. Assuming a narrow monodisperse grain size distribution in a polycrystalline material, the smaller the grain size, the smaller the repulsion stress felt by a grain ...