When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Azure Cognitive Search - Wikipedia

    en.wikipedia.org/wiki/Azure_Cognitive_Search

    The Search as a service framework is intended to provide developers with complex search capabilities for mobile and web development while hiding infrastructure requirements and search algorithm complexities. Azure Search is a recent addition to Microsoft's Infrastructure as a Service (IaaS) approach.

  3. Vector database - Wikipedia

    en.wikipedia.org/wiki/Vector_database

    A vector database, vector store or vector search engine is a database that can store vectors (fixed-length lists of numbers) along with other data items. Vector databases typically implement one or more Approximate Nearest Neighbor algorithms, [1] [2] [3] so that one can search the database with a query vector to retrieve the closest matching database records.

  4. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    Experimental results show that SVMs achieve significantly higher search accuracy than traditional query refinement schemes after just three to four rounds of relevance feedback. This is also true for image segmentation systems, including those using a modified version SVM that uses the privileged approach as suggested by Vapnik.

  5. Retrieval-augmented generation - Wikipedia

    en.wikipedia.org/wiki/Retrieval-augmented_generation

    Retrieval-Augmented Generation (RAG) is a technique that grants generative artificial intelligence models information retrieval capabilities. It modifies interactions with a large language model (LLM) so that the model responds to user queries with reference to a specified set of documents, using this information to augment information drawn from its own vast, static training data.

  6. Feature hashing - Wikipedia

    en.wikipedia.org/wiki/Feature_hashing

    In a typical document classification task, the input to the machine learning algorithm (both during learning and classification) is free text. From this, a bag of words (BOW) representation is constructed: the individual tokens are extracted and counted, and each distinct token in the training set defines a feature (independent variable) of each of the documents in both the training and test sets.

  7. Vectorization - Wikipedia

    en.wikipedia.org/wiki/Vectorization

    Automatic vectorization, a compiler optimization that transforms loops to vector operations; Image tracing, the creation of vector from raster graphics; Word embedding, mapping words to vectors, in natural language processing

  8. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    A knowledge graph = {,,} is a collection of entities , relations , and facts . [5] A fact is a triple (,,) that denotes a link between the head and the tail of the triple. . Another notation that is often used in the literature to represent a triple (or fact) is <,, >

  9. Automatic vectorization - Wikipedia

    en.wikipedia.org/wiki/Automatic_vectorization

    Automatic vectorization, in parallel computing, is a special case of automatic parallelization, where a computer program is converted from a scalar implementation, which processes a single pair of operands at a time, to a vector implementation, which processes one operation on multiple pairs of operands at once.