When.com Web Search

  1. Ads

    related to: p vs np problem pdf converter free

Search results

  1. Results From The WOW.Com Content Network
  2. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    They are some of the very few NP problems not known to be in P or to be NP-complete. The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. An important unsolved problem in complexity theory is whether the graph isomorphism problem is in P, NP-complete, or NP-intermediate.

  3. Geometric complexity theory - Wikipedia

    en.wikipedia.org/wiki/Geometric_complexity_theory

    Geometric complexity theory (GCT), is a research program in computational complexity theory proposed by Ketan Mulmuley and Milind Sohoni. The goal of the program is to answer the most famous open problem in computer science – whether P = NP – by showing that the complexity class P is not equal to the complexity class NP.

  4. Natural proof - Wikipedia

    en.wikipedia.org/wiki/Natural_proof

    In computational complexity theory, a natural proof is a certain kind of proof establishing that one complexity class differs from another one. While these proofs are in some sense "natural", it can be shown (assuming a widely believed conjecture on the existence of pseudorandom functions) that no such proof can possibly be used to solve the P vs. NP problem.

  5. NP (complexity) - Wikipedia

    en.wikipedia.org/wiki/NP_(complexity)

    Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that P ≠ NP, the existence of problems within NP but outside both P and NP-complete was established by Ladner. [1] In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems.

  6. Computational complexity theory - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Thus the class of NP-complete problems contains the most difficult problems in NP, in the sense that they are the ones most likely not to be in P. Because the problem P = NP is not solved, being able to reduce a known NP-complete problem, Π 2 {\displaystyle \Pi _{2}} , to another problem, Π 1 {\displaystyle \Pi _{1}} , would indicate that ...

  7. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    The problem has been shown to be NP-hard (more precisely, it is complete for the complexity class FP NP; see function problem), and the decision problem version ("given the costs and a number x, decide whether there is a round-trip route cheaper than x") is NP-complete. The bottleneck travelling salesman problem is also NP-hard.