Search results
Results From The WOW.Com Content Network
The following outline is provided as an overview of and topical guide to fluid dynamics: . In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases.
The study of momentum transfer, or fluid mechanics can be divided into two branches: fluid statics (fluids at rest), and fluid dynamics (fluids in motion). When a fluid is flowing in the x-direction parallel to a solid surface, the fluid has x-directed momentum, and its concentration is υ x ρ .
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [1]: 3 It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.
Asia Pacific Confederation of Chemical Engineering (APCChE); Iranian Association of Chemical Engineering (IAChE) , I.R. Iran; Indian Institute of Chemical Engineers (IIChe), India
where is the fluid density and the fluid velocity. To obtain the equations of motion for incompressible flow , it is assumed that the density, ρ {\displaystyle \rho } , is a constant. Furthermore, occasionally one might consider the unsteady Stokes equations, in which the term ρ ∂ u ∂ t {\displaystyle \rho {\frac {\partial \mathbf {u ...
This can occur around cylinders and spheres, for any fluid, cylinder size and fluid speed, provided that the flow has a Reynolds number in the range ~40 to ~1000. [ 1 ] In fluid dynamics , an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. [ 2 ]
In fluid dynamics, Stokes problem also known as Stokes second problem or sometimes referred to as Stokes boundary layer or Oscillating boundary layer is a problem of determining the flow created by an oscillating solid surface, named after Sir George Stokes.
In fluid dynamics, pipe network analysis is the analysis of the fluid flow through a hydraulics network, containing several or many interconnected branches. The aim is to determine the flow rates and pressure drops in the individual sections of the network. This is a common problem in hydraulic design.