Search results
Results From The WOW.Com Content Network
The color temperature scale describes only the color of light emitted by a light source, which may actually be at a different (and often much lower) temperature. [1] [2] Color temperature has applications in lighting, [3] photography, [4] videography, [5] publishing, [6] manufacturing, [7] astrophysics, [8] and other fields.
Priest proposed to use "the scale of temperature as a scale for arranging the chromaticities of the several illuminants in a serial order". Over the next few years, Judd published three more significant papers: The first verified the findings of Priest, [7] Davis, [8] and Judd, [9] with a paper on sensitivity to change in color temperature. [11]
A list of standardized illuminants, their CIE chromaticity coordinates (x,y) of a perfectly reflecting (or transmitting) diffuser, and their correlated color temperatures (CCTs) are given below. The CIE chromaticity coordinates are given for both the 2 degree field of view (1931) and the 10 degree field of view (1964). [1]
It goes from deep red at low temperatures through orange, yellowish, white, and finally bluish white at very high temperatures. A color space is a three-dimensional space; that is, a color is specified by a set of three numbers (the CIE coordinates X, Y, and Z, for example, or other values such as hue, colorfulness, and luminance) which specify ...
Image credits: Photoglob Zürich "The product name Kodachrome resurfaced in the 1930s with a three-color chromogenic process, a variant that we still use today," Osterman continues.
500 million years of climate change Ice core data for the past 400,000 years, with the present at right. Note length of glacial cycles averages ~100,000 years. Blue curve is temperature, green curve is CO 2, and red curve is windblown glacial dust (loess). Scale: Millions of years before present, earlier dates approximate.
The set of passbands or filters is called a photometric system. The difference in magnitudes found with these filters is called the U−B or B−V color index respectively. In principle, the temperature of a star can be calculated directly from the B−V index, and there are several formulae to make this connection. [6]
In photography, mireds are used to indicate the color temperature shift provided by a filter or gel for a given film and light source. For instance, to use daylight film (5700 K) to take a photograph under a tungsten light source (3200 K) without introducing a color cast , one would need a corrective filter or gel providing a mired shift