When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    The next step is to multiply the above value by the step size , which we take equal to one here: h ⋅ f ( y 0 ) = 11 = 1. {\displaystyle h\cdot f(y_{0})=1\cdot 1=1.} Since the step size is the change in t {\displaystyle t} , when we multiply the step size and the slope of the tangent, we get a change in y {\displaystyle y} value.

  3. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  4. Exponential response formula - Wikipedia

    en.wikipedia.org/wiki/Exponential_response_formula

    In mathematics, the exponential response formula (ERF), also known as exponential response and complex replacement, is a method used to find a particular solution of a non-homogeneous linear ordinary differential equation of any order. [1] [2] The exponential response formula is applicable to non-homogeneous linear ordinary differential ...

  5. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case. [1] Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2]

  6. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Because of this, different methods need to be used to solve BVPs. For example, the shooting method (and its variants) or global methods like finite differences, [3] Galerkin methods, [4] or collocation methods are appropriate for that class of problems. The Picard–Lindelöf theorem states that there is a unique solution, provided f is ...

  7. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    In numerical analysis, the Runge–Kutta methods (English: / ˈ r ʊ ŋ ə ˈ k ʊ t ɑː / ⓘ RUUNG-ə-KUUT-tah [1]) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. [2]

  8. One-step method - Wikipedia

    en.wikipedia.org/wiki/One-step_method

    A numerical method, for example a one-step method, calculates an approximate value ~ for this, which depends on the choice of step size >. It is assumed that the method is convergent, i.e. that v ~ ( h ) {\displaystyle {\tilde {v}}(h)} converges to v {\displaystyle v} when h {\displaystyle h} converges to zero.

  9. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    If τ > 0 and b > 1, then x has exponential growth. If τ < 0 and b > 1, or τ > 0 and 0 < b < 1, then x has exponential decay. Example: If a species of bacteria doubles every ten minutes, starting out with only one bacterium, how many bacteria would be present after one hour? The question implies a = 1, b = 2 and τ = 10 min.