When.com Web Search

  1. Ads

    related to: perfect square 1 40 to 100 numbers printable pdf

Search results

  1. Results From The WOW.Com Content Network
  2. List of Mersenne primes and perfect numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_Mersenne_primes...

    So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4] Euclid proved c. 300 BCE that every prime expressed as M p = 2 p − 1 has a corresponding perfect number M p × (M p +1)/2 = 2 p − 1 × (2 p − 1).

  3. Most-perfect magic square - Wikipedia

    en.wikipedia.org/wiki/Most-perfect_magic_square

    A most-perfect magic square of order n is a magic square containing the numbers 1 to n 2 with two additional properties: Each 2 × 2 subsquare sums to 2 s , where s = n 2 + 1. All pairs of integers distant n /2 along a (major) diagonal sum to s .

  4. Perfect number - Wikipedia

    en.wikipedia.org/wiki/Perfect_number

    In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. [1] For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.

  5. Magic square - Wikipedia

    en.wikipedia.org/wiki/Magic_square

    An extension of the above example for Orders 8 and 12 First generate a pattern table, where a '1' indicates selecting from the square where the numbers are written in order 1 to n 2 (left-to-right, top-to-bottom), and a '0' indicates selecting from the square where the numbers are written in reverse order n 2 to 1.

  6. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 3 2 and can be written as 3 × 3.

  7. Pandiagonal magic square - Wikipedia

    en.wikipedia.org/wiki/Pandiagonal_magic_square

    The number of 4 × 4 pandiagonal magic squares using numbers 1-16 without duplicates is 384 (16 times 24, where 16 accounts for the translation and 24 accounts for the 4! ways to assign 1, 2, 4, and 8 to b, c, d, and e).