Search results
Results From The WOW.Com Content Network
The ultimate strength of concrete is influenced by the water-cementitious ratio (w/cm), the design constituents, and the mixing, placement and curing methods employed.All things being equal, concrete with a lower water-cement (cementitious) ratio makes a stronger concrete than that with a higher ratio. [2]
A w/c ratio higher than 0.60 is not acceptable as fresh concrete becomes "soup" [2] and leads to a higher porosity and to very poor quality hardened concrete as publicly stated by Prof. Gustave Magnel (1889-1955, Ghent University, Belgium) during an official address to American building contractors at the occasion of one of his visits in the ...
High-strength concrete has a compressive strength greater than 40 MPa (6000 psi). In the UK, BS EN 206-1 [3] defines High strength concrete as concrete with a compressive strength class higher than C50/60. High-strength concrete is made by lowering the water-cement (W/C) ratio to 0.35 or lower.
Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures to a solid over time. Concrete is the second-most-used substance in the world after water, [1] and is the most widely used building material. [2] Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined. [3]
Once this is defined, design code gives standard prescriptions for w/c ratio, the cement content, and the thickness of the concrete cover. This approach represents an improvement step for the durability design of reinforced concrete structures, it is suitable for the design of ordinary structures designed with traditional materials (Portland ...
Self-consolidating concrete or self-compacting concrete (SCC) [1] is a concrete mix which has a low yield stress, high deformability, good segregation resistance (prevents separation of particles in the mix), and moderate viscosity (necessary to ensure uniform suspension of solid particles during transportation, placement (without external compaction), and thereafter until the concrete sets).
Abrams' law (also called Abrams' water-cement ratio law) [1] is a concept in civil engineering. The law states the strength of a concrete mix is inversely related to the mass ratio of water to cement. [1] [2] As the water content increases, the strength of concrete decreases. Abrams’ law is a special case of a general rule formulated ...
The flow table test or slump-flow test is a method to determine consistency of fresh concrete. Flow table test is also used to identify transportable moisture limit of solid bulk cargoes. [ 1 ] It is used primarily for assessing concrete that is too fluid (workable) to be measured using the slump test , because the concrete will not retain its ...