When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.

  3. Fisher's exact test - Wikipedia

    en.wikipedia.org/wiki/Fisher's_exact_test

    In order to calculate the significance of the observed data, i.e. the total probability of observing data as extreme or more extreme if the null hypothesis is true, we have to calculate the values of p for both these tables, and add them together. This gives a one-tailed test, with p approximately 0

  4. Fisher's method - Wikipedia

    en.wikipedia.org/wiki/Fisher's_method

    Under Fisher's method, two small p-values P 1 and P 2 combine to form a smaller p-value.The darkest boundary defines the region where the meta-analysis p-value is below 0.05.. For example, if both p-values are around 0.10, or if one is around 0.04 and one is around 0.25, the meta-analysis p-value is around 0

  5. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a critical value or equivalently by evaluating a p-value computed from the test statistic. Roughly 100 specialized statistical tests have been defined. [1] [2]

  6. Statistical significance - Wikipedia

    en.wikipedia.org/wiki/Statistical_significance

    To determine whether a result is statistically significant, a researcher calculates a p-value, which is the probability of observing an effect of the same magnitude or more extreme given that the null hypothesis is true. [5] [12] The null hypothesis is rejected if the p-value is less than (or equal to) a predetermined level, .

  7. Šidák correction - Wikipedia

    en.wikipedia.org/wiki/Šidák_correction

    The Šidák correction is derived by assuming that the individual tests are independent.Let the significance threshold for each test be ; then the probability that at least one of the tests is significant under this threshold is (1 - the probability that none of them are significant).

  8. p-chart - Wikipedia

    en.wikipedia.org/wiki/P-chart

    The p-chart only accommodates "pass"/"fail"-type inspection as determined by one or more go-no go gauges or tests, effectively applying the specifications to the data before they are plotted on the chart. Other types of control charts display the magnitude of the quality characteristic under study, making troubleshooting possible directly from ...

  9. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The maximum variance of this distribution is 0.25, which occurs when the true parameter is p = 0.5. In practical applications, where the true parameter p is unknown, the maximum variance is often employed for sample size assessments. If a reasonable estimate for p is known the quantity () may be used in place of 0.25.