Ad
related to: explain the importance of telomeres in prokaryotes making
Search results
Results From The WOW.Com Content Network
A telomere (/ ˈ t ɛ l ə m ɪər, ˈ t iː l ə-/; from Ancient Greek τέλος (télos) 'end' and μέρος (méros) 'part') is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes (see Sequences). Telomeres are a widespread genetic feature most commonly found in eukaryotes.
This problem makes eukaryotic cells unable to copy the last few bases on the 3' end of the template DNA strand, leading to chromosome—and, therefore, telomere—shortening every S phase. [2] Measurements of telomere lengths across cell types at various ages suggest that this gradual chromosome shortening results in a gradual reduction in ...
Another study found little evidence that, in humans, telomere length is a significant biomarker of normal aging with respect to important cognitive and physical abilities. [ 39 ] Some experiments have raised questions on whether telomerase can be used as an anti-aging therapy , namely, the fact that mice with elevated levels of telomerase have ...
Telomere length is different in different tissues and cell types of the body. [10] Developing a general telomere lengthening strategy that is effective in all tissues is a complex task; Also, understanding how different types of cells, organs and systems react to telomere manipulation is very important for developing safe and effective ...
Both are believed to be present in the last eukaryotic common ancestor. Prokaryotes (bacteria and archaea) usually undergo a vegetative cell division known as binary fission, where their genetic material is segregated equally into two daughter cells, but there are alternative manners of division, such as budding, that have been observed. All ...
The end replication problem is handled in eukaryotic cells by telomere regions and telomerase. Telomeres extend the 3' end of the parental chromosome beyond the 5' end of the daughter strand. This single-stranded DNA structure can act as an origin of replication that recruits telomerase.
Telomeres are regions of repetitive DNA close to the ends and help prevent loss of genes due to this shortening. Shortening of the telomeres is a normal process in somatic cells. This shortens the telomeres of the daughter DNA chromosome. As a result, cells can only divide a certain number of times before the DNA loss prevents further division.
Telomeres are specialized protein–DNA constructs present at the ends of eukaryotic chromosomes, which prevent them from degradation and end-to-end chromosomal fusion. Most vertebrate telomeric DNA consists of long (T T A G G G)n repeats of variable length, often around 3-20kb. Subtelomeres are segments of DNA between telomeric caps and ...