When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    Electron atomic and molecular orbitals. The chart of orbitals (left) is arranged by increasing energy (see Madelung rule). Atomic orbits are functions of three variables (two angles, and the distance r from the nucleus). These images are faithful to the angular component of the orbital, but not entirely representative of the orbital as a whole.

  3. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    In chemistry, this quantum number is very important, since it specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles. The azimuthal quantum number can also denote the number of angular nodes present in an orbital. For example, for p orbitals, ℓ = 1 and thus the amount of angular nodes in a p orbital is 1.

  4. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. [1] For example, the electron configuration of the neon atom is 1s 2 2s 2 2p 6 , meaning that the 1s, 2s, and 2p subshells are occupied by two, two, and six ...

  5. Electron shell - Wikipedia

    en.wikipedia.org/wiki/Electron_shell

    As work continued on the electron shell structure of the Sommerfeld-Bohr Model, Sommerfeld had introduced three "quantum numbers n, k, and m, that described the size of the orbit, the shape of the orbit, and the direction in which the orbit was pointing." [23] Because we use k for the Boltzmann constant, the azimuthal quantum number was changed ...

  6. Magnetic quantum number - Wikipedia

    en.wikipedia.org/wiki/Magnetic_quantum_number

    The orbital magnetic quantum number takes integer values in the range from to +, including zero. [3] Thus the s, p, d, and f subshells contain 1, 3, 5, and 7 orbitals each. Each of these orbitals can accommodate up to two electrons (with opposite spins), forming the basis of the periodic table.

  7. Azimuthal quantum number - Wikipedia

    en.wikipedia.org/wiki/Azimuthal_quantum_number

    The term "azimuthal quantum number" was introduced by Arnold Sommerfeld in 1915 [1]: II:132 as part of an ad hoc description of the energy structure of atomic spectra. . Only later with the quantum model of the atom was it understood that this number, ℓ, arises from quantization of orbital angular moment

  8. Electron configurations of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_configurations_of...

    This page shows the electron configurations of the neutral gaseous atoms in their ground states. For each atom the subshells are given first in concise form, then with all subshells written out, followed by the number of electrons per shell.

  9. Spectroscopic notation - Wikipedia

    en.wikipedia.org/wiki/Spectroscopic_notation

    This notation is used to specify electron configurations and to create the term symbol for the electron states in a multi-electron atom. When writing a term symbol, the above scheme for a single electron's orbital quantum number is applied to the total orbital angular momentum associated to an electron state.