Ads
related to: geometry similarity formula
Search results
Results From The WOW.Com Content Network
Similar figures. In Euclidean geometry, two objects are similar if they have the same shape, or if one has the same shape as the mirror image of the other.More precisely, one can be obtained from the other by uniformly scaling (enlarging or reducing), possibly with additional translation, rotation and reflection.
Figure 1: The point O is an external homothetic center for the two triangles. The size of each figure is proportional to its distance from the homothetic center. In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another.
Kinematic similarity – fluid flow of both the model and real application must undergo similar time rates of change motions. (fluid streamlines are similar) (fluid streamlines are similar) Dynamic similarity – ratios of all forces acting on corresponding fluid particles and boundary surfaces in the two systems are constant.
In projective geometry, a homothetic transformation is a similarity transformation (i.e., fixes a given elliptic involution) that leaves the line at infinity pointwise invariant. [ 2 ] In Euclidean geometry, a homothety of ratio k {\displaystyle k} multiplies distances between points by | k | {\displaystyle |k|} , areas by k 2 {\displaystyle k ...
3. Often used for denoting other types of similarity, for example, matrix similarity or similarity of geometric shapes. 4. Standard notation for an equivalence relation. 5. In probability and statistics, may specify the probability distribution of a random variable.
In Euclidean geometry, AAA (angle-angle-angle) (or just AA, since in Euclidean geometry the angles of a triangle add up to 180°) does not provide information regarding the size of the two triangles and hence proves only similarity and not congruence in Euclidean space.