When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nucleic acid secondary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_secondary...

    The double helix is an important tertiary structure in nucleic acid molecules which is intimately connected with the molecule's secondary structure. A double helix is formed by regions of many consecutive base pairs. The nucleic acid double helix is a spiral polymer, usually right-handed, containing two nucleotide strands which base pair together.

  3. Nucleic acid double helix - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_double_helix

    The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...

  4. Molecular models of DNA - Wikipedia

    en.wikipedia.org/wiki/Molecular_models_of_DNA

    From the very early stages of structural studies of DNA by X-ray diffraction and biochemical means, molecular models such as the Watson-Crick nucleic acid double helix model were successfully employed to solve the 'puzzle' of DNA structure, and also find how the latter relates to its key functions in living cells.

  5. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    B-DNA's favored conformations occur at high water concentrations; the hydration of the minor groove appears to favor B-DNA. B-DNA base pairs are nearly perpendicular to the helix axis. The sugar pucker which determines the shape of the a-helix, whether the helix will exist in the A-form or in the B-form, occurs at the C2'-endo. [13]

  6. Nucleic acid tertiary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_tertiary...

    James D. Watson and Francis Crick described this structure as a double helix with a radius of 10 Å and pitch of 34 Å, making one complete turn about its axis every 10 bp of sequence. [3] The double helix makes one complete turn about its axis every 10.4–10.5 base pairs in solution.

  7. Complementarity (molecular biology) - Wikipedia

    en.wikipedia.org/wiki/Complementarity_(molecular...

    Complementarity of DNA strands in a double helix make it possible to use one strand as a template to construct the other. This principle plays an important role in DNA replication , setting the foundation of heredity by explaining how genetic information can be passed down to the next generation.

  8. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    The structure of the DNA double helix (type B-DNA). The atoms in the structure are color-coded by element and the detailed structures of two base pairs are shown in the bottom right. DNA exists as a double-stranded structure, with both strands coiled together to form the characteristic double helix.

  9. Nucleic acid thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_thermodynamics

    The melting temperature, T m, occurs when half of the double-stranded nucleic acid has dissociated. If no additional nucleic acids are present, then [A], [B], and [AB] will be equal, and equal to half the initial concentration of double-stranded nucleic acid, [AB] initial. This gives an expression for the melting point of a nucleic acid duplex of