Search results
Results From The WOW.Com Content Network
In electromagnetism, Isopotential maps are a measure of electrostatic potential in space. The spatial derivatives of an electrostatic field indicate the contours of the electrostatic field, so isopotential maps show where another charged molecule might interact, using equipotential lines (isopotentials).
Composite surfaces (maps): Electrostatic potential map (electrophilic indicator) – The most commonly employed property map is the electrostatic potential map. This gives the potential at locations on a particular surface, most commonly a surface of electron density corresponding to overall molecular size. [71]
The gradient of the scalar potential (and hence also its opposite, as in the case of a vector field with an associated potential field) is everywhere perpendicular to the equipotential surface, and zero inside a three-dimensional equipotential region. Electrical conductors offer an intuitive example.
The electric potential and the magnetic vector potential together form a four-vector, so that the two kinds of potential are mixed under Lorentz transformations. Practically, the electric potential is a continuous function in all space, because a spatial derivative of a discontinuous electric potential yields an electric field of impossibly ...
The electrostatic potential map (the property of electrostatic potential mapped upon the electron density) provides an indicator for charge distribution in a molecule. The local ionisation potential map (the property of local ionisation potential mapped upon the electron density) provides an indicator of electrophilicity.
An isopotential map is a measure of electrostatic potential in space, often depicted in two dimensions with the electrostatic charges inducing that electric potential. The term equipotential line or isopotential line refers to a curve of constant electric potential. Whether crossing an equipotential line represents ascending or descending the ...
Practically, this allows trends to be predicted qualitatively based on visual representations of electrostatic potential maps for a series of arenes. Electrostatic attraction is not the only component of cation–π bonding. For example, 1,3,5-trifluorobenzene interacts with cations despite having a negligible quadrupole moment.
Electrostatic potential map of a water molecule, where the oxygen atom has a more negative charge (red) than the positive (blue) hydrogen atoms. Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. [1]