Search results
Results From The WOW.Com Content Network
In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
In 2016, the American Statistical Association (ASA) published a statement on p-values, saying that "the widespread use of 'statistical significance' (generally interpreted as 'p ≤ 0.05') as a license for making a claim of a scientific finding (or implied truth) leads to considerable distortion of the scientific process". [57]
These values can be calculated evaluating the quantile function (also known as "inverse CDF" or "ICDF") of the chi-squared distribution; [24] e. g., the χ 2 ICDF for p = 0.05 and df = 7 yields 2.1673 ≈ 2.17 as in the table above, noticing that 1 – p is the p-value from the table.
The chi-squared test indicates a statistically significant association between the level of education completed and routine check-up attendance (chi2(3) = 14.6090, p = 0.002). The proportions suggest that as the level of education increases, so does the proportion of individuals attending routine check-ups.
If the resulting p-value of Levene's test is less than some significance level (typically 0.05), the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances. Thus, the null hypothesis of equal variances is rejected and it is concluded that there is a difference ...
The weighted harmonic mean of p-values , …, is defined as = = = /, where , …, are weights that must sum to one, i.e. = =.Equal weights may be chosen, in which case = /.. In general, interpreting the HMP directly as a p-value is anti-conservative, meaning that the false positive rate is higher than expected.
The p-value does not indicate the size or importance of the observed effect. [2] A small p -value can be observed for an effect that is not meaningful or important. In fact, the larger the sample size, the smaller the minimum effect needed to produce a statistically significant p -value (see effect size ).
Thus an approximate p-value can be obtained from a normal probability table. For example, if z = 2.2 is observed and a two-sided p-value is desired to test the null hypothesis that =, the p-value is 2 Φ(−2.2) = 0.028, where Φ is the standard normal cumulative distribution function.