Search results
Results From The WOW.Com Content Network
The partial pressure of oxygen (pO 2) in the pulmonary alveoli is required to calculate both the alveolar-arterial gradient of oxygen and the amount of right-to-left cardiac shunt, which are both clinically useful quantities. However, it is not practical to take a sample of gas from the alveoli in order to directly measure the partial pressure ...
A normal A–a gradient for a young adult non-smoker breathing air, is between 5–10 mmHg. Normally, the A–a gradient increases with age. For every decade a person has lived, their A–a gradient is expected to increase by 1 mmHg. A conservative estimate of normal A–a gradient is [age in years + 10]/ 4.
An ABG test measures the blood gas tension values of the arterial partial pressure of oxygen (PaO2), and the arterial partial pressure of carbon dioxide (PaCO2), and the blood's pH. In addition, the arterial oxygen saturation (SaO2) can be determined. Such information is vital when caring for patients with critical illnesses or respiratory disease.
This is calculated by dividing the PaO2 by the FiO2. Example: patient who is receiving an FiO2 of .5 (i.e., 50%) with a measured PaO2 of 60 mmHg has a PaO 2 / FiO 2 ratio of 120. In healthy lungs, the Horowitz index depends on age and usually falls between 350 and 450.
The alveolar oxygen partial pressure is lower than the atmospheric O 2 partial pressure for two reasons.. Firstly, as the air enters the lungs, it is humidified by the upper airway and thus the partial pressure of water vapour (47 mmHg) reduces the oxygen partial pressure to about 150 mmHg.
Blood gas tension refers to the partial pressure of gases in blood. [1] There are several significant purposes for measuring gas tension. [2] The most common gas tensions measured are oxygen tension (P x O 2), carbon dioxide tension (P x CO 2) and carbon monoxide tension (P x CO). [3]
The Shunt equation (also known as the Berggren equation) quantifies the extent to which venous blood bypasses oxygenation in the capillaries of the lung.. “Shunt” and “dead space“ are terms used to describe conditions where either blood flow or ventilation do not interact with each other in the lung, as they should for efficient gas exchange to take place.
The Fick principle states that blood flow to an organ can be calculated using a marker substance if the following information is known: . Amount of marker substance taken up by the organ per unit time