Search results
Results From The WOW.Com Content Network
The equation is used in assessing if the lungs are properly transferring oxygen into the blood. The alveolar air equation is not widely used in clinical medicine, probably because of the complicated appearance of its classic forms. The partial pressure of oxygen (pO 2) in the pulmonary alveoli is required to calculate both the alveolar-arterial ...
The Alveolar–arterial gradient (A-aO 2, [1] or A–a gradient), is a measure of the difference between the alveolar concentration (A) of oxygen and the arterial (a) concentration of oxygen. It is a useful parameter for narrowing the differential diagnosis of hypoxemia. [2] The A–a gradient helps to assess the integrity of the alveolar ...
The rest of the difference is due to the continual uptake of oxygen by the pulmonary capillaries, and the continual diffusion of CO 2 out of the capillaries into the alveoli. The alveolar pO 2 is not routinely measured but is calculated from blood gas measurements by the alveolar gas equation.
Alveolar carbon dioxide tension, or partial pressure: P v O 2: Oxygen tension of mixed venous blood: P (A-a) O 2: Alveolar-arterial oxygen tension difference. The term formerly used (A-a D O 2) is discouraged. P (a/A) O 2: Alveolar-arterial tension ratio; P a O 2:P A O 2 The term oxygen exchange index describes this ratio. C (a-v) O 2 ...
Alveolar gas volume: V L: Actual volume of the lung including the volume of the conducting airway. FVC: Forced vital capacity: the determination of the vital capacity from a maximally forced expiratory effort: FEV t: Forced expiratory volume (time): a generic term indicating the volume of air exhaled under forced conditions in the first t ...
Ideally, the oxygen provided via ventilation would be just enough to saturate the blood fully. In the typical adult, 1 litre of blood can hold about 200 mL of oxygen; 1 litre of dry air has about 210 mL of oxygen. Therefore, under these conditions, the ideal ventilation perfusion ratio would be about 0.95.
Diffusing capacity of the lung (D L) (also known as transfer factor) measures the transfer of gas from air in the lung, to the red blood cells in lung blood vessels. It is part of a comprehensive series of pulmonary function tests to determine the overall ability of the lung to transport gas into and out of the blood.
The Bohr equation helps us find the amount of any expired gas, CO 2, N 2, O 2, etc. In this case we will focus on CO 2 . Defining F e as the fraction of CO 2 in the average expired breath, F A as the fraction of CO 2 in the perfused alveolar volume, and F d as the CO 2 makeup of the unperfused (and thus 'dead') region of the lung;