When.com Web Search

  1. Ad

    related to: radiation luminous efficacy chart for home computers for sale

Search results

  1. Results From The WOW.Com Content Network
  2. Luminous efficacy - Wikipedia

    en.wikipedia.org/wiki/Luminous_efficacy

    The main difference between the luminous efficacy of radiation and the luminous efficacy of a source is that the latter accounts for input energy that is lost as heat or otherwise exits the source as something other than electromagnetic radiation. Luminous efficacy of radiation is a property of the radiation emitted by a source. Luminous ...

  3. Category:Units of luminous exposure - Wikipedia

    en.wikipedia.org/wiki/Category:Units_of_luminous...

    Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency, luminous coefficient V: 1: Luminous efficacy normalized by ...

  4. Wall-plug efficiency - Wikipedia

    en.wikipedia.org/wiki/Wall-plug_efficiency

    Energy of electromagnetic radiation. Radiant energy density: w e: joule per cubic metre J/m 3: M⋅L −1 ⋅T −2: Radiant energy per unit volume. Radiant flux: Φ e [nb 2] watt: W = J/s M⋅L 2 ⋅T −3: Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called ...

  5. Luminous intensity - Wikipedia

    en.wikipedia.org/wiki/Luminous_intensity

    Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency, luminous coefficient V: 1: Luminous efficacy normalized by ...

  6. Category:Units of luminance - Wikipedia

    en.wikipedia.org/wiki/Category:Units_of_luminance

    Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency, luminous coefficient V: 1: Luminous efficacy normalized by ...

  7. Comparison of CRT, LCD, plasma, and OLED displays - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_CRT,_LCD...

    Electro-magnetic radiation emission Can emit a small amount of X-ray radiation. Only emits non-ionizing radiation. [39] Emits strong radio frequency electromagnetic radiation [40] None, although control circuitry may emit radio interference Size Up to 43 in (1.1 m) [41] Up to 120 in (3.0 m) [42] Up to 150 in (3.8 m) [43] (152 in experimental) [44]

  8. Luminous energy - Wikipedia

    en.wikipedia.org/wiki/Luminous_energy

    Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency, luminous coefficient V: 1: Luminous efficacy normalized by ...

  9. Luminance - Wikipedia

    en.wikipedia.org/wiki/Luminance

    Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency, luminous coefficient V: 1: Luminous efficacy normalized by ...