Search results
Results From The WOW.Com Content Network
[1] [3] For example, if a line is viewed as the set of all of its points, their infinite number (i.e., the cardinality of the line) is larger than the number of integers. [4] In this usage, infinity is a mathematical concept, and infinite mathematical objects can be studied, manipulated, and used just like any other mathematical object.
If an infinite set is partitioned into finitely many subsets, then at least one of them must be infinite. Any set which can be mapped onto an infinite set is infinite. The Cartesian product of an infinite set and a nonempty set is infinite. The Cartesian product of an infinite number of sets, each containing at least two elements, is either ...
For example, (R, +), the group of real numbers with addition is an infinite group The general linear group of order n > 0 over an infinite field is infinite See also
aleph-nought, aleph-zero, or aleph-null) is the cardinality of the set of all natural numbers, and is an infinite cardinal.The set of all finite ordinals, called or (where is the lowercase Greek letter omega), also has cardinality .
In mathematics, transfinite numbers or infinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of infinite sets, and the transfinite ordinals, which are ordinal numbers used to provide an ordering of infinite sets.
A series or, redundantly, an infinite series, is an infinite sum. It is often represented as [ 8 ] [ 15 ] [ 16 ] a 0 + a 1 + a 2 + ⋯ or a 1 + a 2 + a 3 + ⋯ , {\displaystyle a_{0}+a_{1}+a_{2}+\cdots \quad {\text{or}}\quad a_{1}+a_{2}+a_{3}+\cdots ,} where the terms a k {\displaystyle a_{k}} are the members of a sequence of numbers ...
The best known example of an uncountable set is the set of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...
Infinite sets are so common, that when one considers finite sets, this is generally explicitly stated; for example finite geometry, finite field, etc. Fermat's Last Theorem is a theorem that was stated in terms of elementary arithmetic, which has been proved only more than 350 years later.