Search results
Results From The WOW.Com Content Network
In mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. [1] A graphical illustration of a zero-dimensional space is a point. [2]
For an n-dimensional lattice, identifying n linearly independent commas reduces the dimension of the lattice to zero, meaning that the number of pitches in the lattice is finite; mathematically, its quotient is a finite abelian group. This zero-dimensional set of pitches is a periodicity block.
A point particle is a 0-brane, of dimension zero; a string, named after vibrating musical strings, is a 1-brane; a membrane, named after vibrating membranes such as drumheads, is a 2-brane. [2] The corresponding object of arbitrary dimension p is called a p-brane, a term coined by M. J. Duff et al. in 1988. [3]
Thus Pythagorean tuning, which uses only the perfect fifth (3/2) and octave (2/1) and their multiples (powers of 2 and 3), is represented through a two-dimensional lattice (or, given octave equivalence, a single dimension), while standard (5-limit) just intonation, which adds the use of the just major third (5/4), may be represented through a ...
One rpm: 10 −1: 1 decihertz (dHz) 189 mHz: Acoustic – frequency of G −7, the lowest note sung by the singer with the deepest voice in the world, Tim Storms. His vocal cords vibrate 1 time every 5.29 seconds. 10 0: 1 hertz (Hz) 1 to 1.66 Hz: Approximate frequency of an adult human's resting heart beat: 1 Hz: 60 bpm, common tempo in music 2 Hz
The simplest example of a vector space is the trivial one: {0}, which contains only the zero vector (see the third axiom in the Vector space article). Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F.
As a special case, a non-empty topological space is zero-dimensional with respect to the covering dimension if every open cover of the space has a refinement consisting of disjoint open sets, meaning any point in the space is contained in exactly one open set of this refinement.
Any straight line or smooth curve is a one-dimensional space, regardless of the dimension of the ambient space in which the line or curve is embedded. Examples include the circle on a plane, or a parametric space curve. In physical space, a 1D subspace is called a "linear dimension" (rectilinear or curvilinear), with units of length (e.g., metre).