Search results
Results From The WOW.Com Content Network
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
Since the graph of an affine(*) function is a line, the graph of a piecewise linear function consists of line segments and rays. The x values (in the above example −3, 0, and 3) where the slope changes are typically called breakpoints, changepoints, threshold values or knots.
In mathematics, the term linear function refers to two distinct but related notions: [1] In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. [2] For distinguishing such a linear function from the other concept, the term affine function is often used ...
In algebraic geometry, an affine variety (or, more generally, an affine algebraic set) is defined as the subset of an affine space that is the set of the common zeros of a set of so-called polynomial functions over the affine space. For defining a polynomial function over the affine space, one has to choose an affine frame.
See Affine space § Affine combinations and barycenter for the definition in this case. This concept is fundamental in Euclidean geometry and affine geometry , because the set of all affine combinations of a set of points forms the smallest affine space containing the points, exactly as the linear combinations of a set of vectors form their ...
An algebraic curve in the Euclidean plane is the set of the points whose coordinates are the solutions of a bivariate polynomial equation p(x, y) = 0.This equation is often called the implicit equation of the curve, in contrast to the curves that are the graph of a function defining explicitly y as a function of x.
In projective geometry, affine space means the complement of a hyperplane at infinity in a projective space. Affine space can also be viewed as a vector space whose operations are limited to those linear combinations whose coefficients sum to one, for example 2x − y, x − y + z, (x + y + z)/3, ix + (1 − i)y, etc.
A plane curve can often be represented in Cartesian coordinates by an implicit equation of the form (,) = for some specific function f. If this equation can be solved explicitly for y or x – that is, rewritten as y = g ( x ) {\displaystyle y=g(x)} or x = h ( y ) {\displaystyle x=h(y)} for specific function g or h – then this provides an ...