When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    is used for the series, and, if it is convergent, to its sum. This convention is similar to that which is used for addition: a + b denotes the operation of adding a and b as well as the result of this addition, which is called the sum of a and b. Any series that is not convergent is said to be divergent or to diverge.

  3. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    The same definition can be used for series = whose terms are not numbers but rather elements of an arbitrary abelian topological group.In that case, instead of using the absolute value, the definition requires the group to have a norm, which is a positive real-valued function ‖ ‖: + on an abelian group (written additively, with identity element 0) such that:

  4. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Otherwise, any series of real numbers or complex numbers that converges but does not converge absolutely is conditionally convergent. Any conditionally convergent sum of real numbers can be rearranged to yield any other real number as a limit, or to diverge. These claims are the content of the Riemann series theorem. [31] [32] [33]

  5. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    The definition of convergence in distribution may be extended from random vectors to more general random elements in arbitrary metric spaces, and even to the “random variables” which are not measurable — a situation which occurs for example in the study of empirical processes. This is the “weak convergence of laws without laws being ...

  6. Alternating series - Wikipedia

    en.wikipedia.org/wiki/Alternating_series

    Absolutely convergent series are unconditionally convergent. But the Riemann series theorem states that conditionally convergent series can be rearranged to create arbitrary convergence. [4] Agnew's theorem describes rearrangements that preserve convergence for all convergent series. The general principle is that addition of infinite sums is ...

  7. Divergent series - Wikipedia

    en.wikipedia.org/wiki/Divergent_series

    Absolute convergence defines the sum of a sequence (or set) of numbers to be the limit of the net of all partial sums a k 1 + ... + a k n, if it exists. It does not depend on the order of the elements of the sequence, and a classical theorem says that a sequence is absolutely convergent if and only if the sequence of absolute values is ...

  8. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol (e.g., ). [1] If such a limit exists and is finite, the sequence is called convergent. [2]

  9. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).