When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  3. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    For example, ln 7.5 is 2.0149..., because e 2.0149... = 7.5. The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1 ...

  4. Logarithmic spiral - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_spiral

    Logarithmic spiral (pitch 10°) A section of the Mandelbrot set following a logarithmic spiralA logarithmic spiral, equiangular spiral, or growth spiral is a self-similar spiral curve that often appears in nature.

  5. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 10 3, the logarithm base of 1000 is 3, or log 10 (1000) = 3.

  6. Contributions of Leonhard Euler to mathematics - Wikipedia

    en.wikipedia.org/wiki/Contributions_of_Leonhard...

    Most researchers in the field long held the view that ⁡ = ⁡ for any positive real since by using the additivity property of logarithms ⁡ = ⁡ (()) = ⁡ = ⁡ (). In a 1747 letter to Jean Le Rond d'Alembert , Euler defined the natural logarithm of −1 as i π {\displaystyle i\pi } , a pure imaginary .

  7. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    In mathematics, logarithmic growth describes a phenomenon whose size or cost can be described as a logarithm function of some input. e.g. y = C log (x). Any logarithm base can be used, since one can be converted to another by multiplying by a fixed constant. [1] Logarithmic growth is the inverse of exponential growth and is very slow. [2]

  8. 50 common hyperbole examples to use in your everyday life

    www.aol.com/news/50-common-hyperbole-examples...

    Ahead, we’ve rounded up 50 holy grail hyperbole examples — some are as sweet as sugar, and some will make you laugh out loud. 50 common hyperbole examples I’m so hungry, I could eat a horse.

  9. Logarithmic number system - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_number_system

    Logarithmic number systems have been independently invented and published at least three times as an alternative to fixed-point and floating-point number systems. [1]Nicholas Kingsbury and Peter Rayner introduced "logarithmic arithmetic" for digital signal processing (DSP) in 1971.