Ads
related to: group theory mathematics questions and answers form 1 lesson plan
Search results
Results From The WOW.Com Content Network
In mathematics and abstract algebra, group theory studies the algebraic structures known as groups.The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms.
Group theory has three main historical sources: number theory, the theory of algebraic equations, and geometry.The number-theoretic strand was begun by Leonhard Euler, and developed by Gauss's work on modular arithmetic and additive and multiplicative groups related to quadratic fields.
A presentation of a group determines a geometry, in the sense of geometric group theory: one has the Cayley graph, which has a metric, called the word metric. These are also two resulting orders, the weak order and the Bruhat order, and corresponding Hasse diagrams. An important example is in the Coxeter groups.
In mathematics, the classification of finite simple groups (popularly called the enormous theorem [1] [2]) is a result of group theory stating that every finite simple group is either cyclic, or alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic (the Tits group is sometimes regarded as a sporadic group ...
Algebra and Tiling: Homomorphisms in the Service of Geometry is a mathematics textbook on the use of group theory to answer questions about tessellations and higher dimensional honeycombs, partitions of the Euclidean plane or higher-dimensional spaces into congruent tiles.
Gruppentheorie und Quantenmechanik, or The Theory of Groups and Quantum Mechanics, is a textbook written by Hermann Weyl about the mathematical study of symmetry, group theory, and how to apply it to quantum physics.
In mathematics, especially in the area of abstract algebra known as combinatorial group theory, the word problem for a finitely generated group is the algorithmic problem of deciding whether two words in the generators represent the same element of .
The group consists of the finite strings (words) that can be composed by elements from A, together with other elements that are necessary to form a group. Multiplication of strings is defined by concatenation, for instance (abb) • (bca) = abbbca. Every group (G, •) is basically a factor group of a free group generated by G.