Search results
Results From The WOW.Com Content Network
In biochemistry, the Lineweaver–Burk plot (or double reciprocal plot) is a graphical representation of the Michaelis–Menten equation of enzyme kinetics, described by Hans Lineweaver and Dean Burk in 1934.
In order to overcome the defects of the above definition, Garlaschelli and Loffredo defined reciprocity as the correlation coefficient between the entries of the adjacency matrix of a directed graph (= if a link from to exists, and = if not):
Growth equations. Like exponential growth and logistic growth, hyperbolic growth is highly nonlinear, but differs in important respects.These functions can be confused, as exponential growth, hyperbolic growth, and the first half of logistic growth are convex functions; however their asymptotic behavior (behavior as input gets large) differs dramatically:
Graph of the density of the inverse of the standard normal distribution. If variable X follows a standard normal distribution (,), then Y = 1/X follows a reciprocal standard normal distribution, heavy-tailed and bimodal, [2] with modes at and density
The reciprocal function: y = 1/x.For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola.. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1.
Graphs that show a trend of data should illustrate the trend accurately in its context, rather than illustrating the trend in an exaggerated or sensationalized way. In short, don't draw misleading graphs. Choose a type of graph that is appropriate for the data you are illustrating. Cartesian coordinates
In science and engineering, a log–log graph or log–log plot is a two-dimensional graph of numerical data that uses logarithmic scales on both the horizontal and vertical axes. Power functions – relationships of the form y = a x k {\displaystyle y=ax^{k}} – appear as straight lines in a log–log graph, with the exponent corresponding to ...
The reciprocal is sometimes used as a starting point for numerical computation of the gamma function, and a few software libraries provide it separately from the regular gamma function. Karl Weierstrass called the reciprocal gamma function the "factorielle" and used it in his development of the Weierstrass factorization theorem .