Search results
Results From The WOW.Com Content Network
The instantaneous phase (also known as local phase or simply phase) of a complex-valued function s(t), is the real-valued function: = {()}, where arg is the complex argument function. The instantaneous frequency is the temporal rate of change of the instantaneous phase.
Jerk (also known as jolt) is the rate of change of an object's acceleration over time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s 3 ( SI units ) or standard gravities per second ( g 0 /s).
[5] [6] The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h). [7] [8]: 237 [9] The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change. [9]
For this reason, the derivative is often described as the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable. [1] The process of finding a derivative is called differentiation .
Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the second derivative of the position of an object with respect to time is the instantaneous acceleration of the object, or the rate at which the velocity of the object is changing with respect to
In probability theory, a transition-rate matrix (also known as a Q-matrix, [1] intensity matrix, [2] or infinitesimal generator matrix [3]) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.
If the fluent is defined as = (where is time) the fluxion (derivative) at = is: ˙ = = (+) (+) = + + + = + Here is an infinitely small amount of time. [6] So, the term is second order infinite small term and according to Newton, we can now ignore because of its second order infinite smallness comparing to first order infinite smallness of . [7]