Search results
Results From The WOW.Com Content Network
An inexact differential is a differential for which the integral over some two paths with the same end points is different. Specifically, there exist integrable paths ,: [,] such that () = (), () = and In this case, we denote the integrals as | and | respectively to make explicit the path dependence of the change of the quantity we are considering as .
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial:
For x = 1, the incomplete beta function coincides with the complete beta function. The relationship between the two functions is like that between the gamma function and its generalization the incomplete gamma function. For positive integer a and b, the incomplete beta function will be a polynomial of degree a + b - 1 with rational coefficients.
The tangent half-angle substitution relates an angle to the slope of a line. Introducing a new variable = , sines and cosines can be expressed as rational functions of , and can be expressed as the product of and a rational function of , as follows: = +, = +, = +.
To compute the integral, we set n to its value and use the reduction formula to express it in terms of the (n – 1) or (n – 2) integral. The lower index integral can be used to calculate the higher index ones; the process is continued repeatedly until we reach a point where the function to be integrated can be computed, usually when its index is 0 or 1.
In numerical analysis, the minimum degree algorithm is an algorithm used to permute the rows and columns of a symmetric sparse matrix before applying the Cholesky decomposition, to reduce the number of non-zeros in the Cholesky factor. This results in reduced storage requirements and means that the Cholesky factor can be applied with fewer ...
The difficulty with this interchange is determining the change in description of the domain D. The method also is applicable to other multiple integrals. [1] [2] Sometimes, even though a full evaluation is difficult, or perhaps requires a numerical integration, a double integral can be reduced to a single integration, as illustrated next.