Search results
Results From The WOW.Com Content Network
CTCF's binding is disrupted by CpG methylation of the DNA it binds to. [24] On the other hand, CTCF binding may set boundaries for the spreading of DNA methylation. [25] In recent studies, CTCF binding loss is reported to increase localized CpG methylation, which reflected another epigenetic remodeling role of CTCF in human genome. [26] [27] [28]
Replication timing domains have been shown to be associated with TADs as their boundary is co localized with the boundaries of TADs that are located at either sides of compartments. [47] Insulated neighborhoods , DNA loops formed by CTCF/cohesin-bound regions, are proposed to functionally underlie TADs.
Vertebrates in particular appear to rely heavily on the CTCF insulator, however there are many different insulator sequences identified. [2] Insulated neighborhoods formed by physical interaction between two CTCF-bound DNA loci contain the interactions between enhancers and their target genes. [12]
Within eukaryotes, DNA replication is controlled within the context of the cell cycle. As the cell grows and divides, it progresses through stages in the cell cycle; DNA replication takes place during the S phase (synthesis phase). The progress of the eukaryotic cell through the cycle is controlled by cell cycle checkpoints.
During DNA replication, the replisome will unwind the parental duplex DNA into a two single-stranded DNA template replication fork in a 5' to 3' direction. The leading strand is the template strand that is being replicated in the same direction as the movement of the replication fork.
Therefore, TERRA expression may play an important role in the proper orchestration of DNA replication, as TERRA may hybridize with single-stranded DNA during replication. [ 21 ] [ 26 ] [ 27 ] [ 28 ] In cells with long telomeres and high TERRA expression, this could potentially lead to replicative arrest and the eventual collapse of the ...
DNA is a duplex formed by two anti-parallel strands. Following Meselson-Stahl, the process of DNA replication is semi-conservative, whereby during replication the original DNA duplex is separated into two daughter strands (referred to as the leading and lagging strand templates). Each daughter strand becomes part of a new DNA duplex.
This directionality is because RNA polymerase can only add nucleotides to the 3' end of the growing mRNA chain. This use of only the 3' → 5' DNA strand eliminates the need for the Okazaki fragments that are seen in DNA replication. [2] This also removes the need for an RNA primer to initiate RNA synthesis, as is the case in DNA replication.