When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 7a – Proof of the law of cosines for acute angle γ by "cutting and pasting". Fig. 7b – Proof of the law of cosines for obtuse angle γ by "cutting and pasting". One can also prove the law of cosines by calculating areas. The change of sign as the angle γ becomes obtuse makes a case distinction necessary. Recall that

  3. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles , see Trigonometric functions . Other definitions, and therefore other proofs are based on the Taylor series of sine and cosine , or on the differential equation f ″ + f = 0 ...

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  5. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The spherical cosine formulae were originally proved by elementary geometry and the planar cosine rule (Todhunter, [1] Art.37). He also gives a derivation using simple coordinate geometry and the planar cosine rule (Art.60). The approach outlined here uses simpler vector methods. (These methods are also discussed at Spherical law of cosines.)

  6. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    The cosine, cotangent, and cosecant are so named because they are respectively the sine, tangent, and secant of the complementary angle abbreviated to "co-". [32] With these functions, one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines. [33]

  7. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    A similar proof can be completed using power series as above to establish that the sine has as its derivative the cosine, and the cosine has as its derivative the negative sine. In fact, the definitions by ordinary differential equation and by power series lead to similar derivations of most identities.

  8. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Using the law of cosines avoids this problem: within the interval from 0° to 180° the cosine value unambiguously determines its angle. On the other hand, if the angle is small (or close to 180°), then it is more robust numerically to determine it from its sine than its cosine because the arc-cosine function has a divergent derivative at 1 ...

  9. Talk:Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Talk:Law_of_cosines

    If you Google "Law of Cosines", you will find the above three formulas, which corresponts to the article's triangle figure. All three are the same formula. Therefore there is just one Cosine Law. Martin 4 5 1 23:27, 3 November 2009 (UTC) All triangles have three Sines, three Cosines, and three Tangents. The same goes for their inverses too.