When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The temperature approaches a linear function because that is the stable solution of the equation: wherever temperature has a nonzero second spatial derivative, the time derivative is nonzero as well. The heat equation implies that peaks ( local maxima ) of u {\displaystyle u} will be gradually eroded down, while depressions ( local minima ...

  3. Calorimeter constant - Wikipedia

    en.wikipedia.org/wiki/Calorimeter_constant

    To determine the change in enthalpy in a neutralization reaction (ΔH neutralization), a known amount of basic solution may be placed in a calorimeter, and the temperature of this solution alone recorded. Then, a known amount of acidic solution may be added and the change in temperature measured using a thermometer.

  4. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer

  5. Adiabatic process - Wikipedia

    en.wikipedia.org/wiki/Adiabatic_process

    We know the compressed gas has V = 0.1 L and P = 2.51 × 10 6 Pa, so we can solve for temperature: ... That is a final temperature of 753 K, or 479 °C, or 896 °F ...

  6. Polytropic process - Wikipedia

    en.wikipedia.org/wiki/Polytropic_process

    Under the assumption of ideal gas law, heat and work flows go in opposite directions (K > 0), such as in vapor compression refrigeration during compression, where the elevated vapour temperature resulting from the work done by the compressor on the vapour leads to some heat loss from the vapour to the cooler surroundings.

  7. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    (Note - the relation between pressure, volume, temperature, and particle number which is commonly called "the equation of state" is just one of many possible equations of state.) If we know all k+2 of the above equations of state, we may reconstitute the fundamental equation and recover all thermodynamic properties of the system.

  8. Heat kernel - Wikipedia

    en.wikipedia.org/wiki/Heat_kernel

    Fundamental solution of the one-dimensional heat equation. Red: time course of (,).Blue: time courses of (,) for two selected points. Interactive version. The most well-known heat kernel is the heat kernel of d-dimensional Euclidean space R d, which has the form of a time-varying Gaussian function, (,,) = / ⁡ (| |), which is defined for all , and >. [1]

  9. Numerical solution of the convection–diffusion equation

    en.wikipedia.org/wiki/Numerical_solution_of_the...

    T is the temperature in particular case of heat transfer otherwise it is the variable of interest; t is time; c is the specific heat; u is velocity; ε is porosity that is the ratio of liquid volume to the total volume; ρ is mass density; λ is thermal conductivity; Q(x,t) is source term representing the capacity of internal sources