Ads
related to: conjecture math example questions pdf worksheet 6th grade answer key
Search results
Results From The WOW.Com Content Network
The conjectures in following list were not necessarily generally accepted as true before being disproved. Atiyah conjecture (not a conjecture to start with) Borsuk's conjecture; Chinese hypothesis (not a conjecture to start with) Doomsday conjecture; Euler's sum of powers conjecture; Ganea conjecture; Generalized Smith conjecture; Hauptvermutung
This category is intended for all unsolved problems in mathematics, including conjectures. Conjectures are qualified by having a suggested or proposed hypothesis. There may or may not be conjectures for all unsolved problems.
The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r, then the L-function L(E, s) associated with it vanishes to order r at s = 1.
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. [ 1 ] [ 2 ] [ 3 ] Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem , proven in 1995 by Andrew Wiles ), have shaped much of mathematical history as new areas of mathematics are developed in ...
Schanuel's conjecture; Schinzel's hypothesis H; Scholz conjecture; Second Hardy–Littlewood conjecture; Serre's conjecture II; Sexy prime; SierpiĆski number; Singmaster's conjecture; Safe and Sophie Germain primes; Stark conjectures; Sums of three cubes; Superperfect number; Supersingular prime (algebraic number theory) Szpiro's conjecture
In mathematics, the Birch and Swinnerton-Dyer conjecture (often called the Birch–Swinnerton-Dyer conjecture) describes the set of rational solutions to equations defining an elliptic curve. It is an open problem in the field of number theory and is widely recognized as one of the most challenging mathematical problems.