Search results
Results From The WOW.Com Content Network
The mid-range is closely related to the range, a measure of statistical dispersion defined as the difference between maximum and minimum values. The two measures are complementary in sense that if one knows the mid-range and the range, one can find the sample maximum and minimum values.
Calculating the median in data sets of odd (above) and even (below) observations. The median of a set of numbers is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution.
In descriptive statistics, the range of a set of data is size of the narrowest interval which contains all the data. It is calculated as the difference between the largest and smallest values (also known as the sample maximum and minimum). [1] It is expressed in the same units as the data. The range provides an indication of statistical ...
the arithmetic mean of data values after a certain number or proportion of the highest and lowest data values have been discarded. Interquartile mean a truncated mean based on data within the interquartile range. Midrange the arithmetic mean of the maximum and minimum values of a data set. Midhinge the arithmetic mean of the first and third ...
Simple L-estimators can be visually estimated from a box plot, and include interquartile range, midhinge, range, mid-range, and trimean.. In statistics, an L-estimator (or L-statistic) is an estimator which is a linear combination of order statistics of the measurements.
A similar important statistic in exploratory data analysis that is simply related to the order statistics is the sample interquartile range. The sample median may or may not be an order statistic, since there is a single middle value only when the number n of observations is odd .
In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. [1] The IQR may also be called the midspread, middle 50%, fourth spread, or H‑spread. It is defined as the difference between the 75th and 25th percentiles of the data.
The two are complementary in sense that if one knows the midhinge and the IQR, one can find the first and third quartiles. The use of the term hinge for the lower or upper quartiles derives from John Tukey 's work on exploratory data analysis in the late 1970s, [ 1 ] and midhinge is a fairly modern term dating from around that time.