When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called GaussJordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].

  3. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called GaussJordan elimination. A matrix is in column echelon form if its transpose is in row echelon form.

  4. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    This real Jordan form is a consequence of the complex Jordan form. For a real matrix the nonreal eigenvectors and generalized eigenvectors can always be chosen to form complex conjugate pairs. Taking the real and imaginary part (linear combination of the vector and its conjugate), the matrix has this form with respect to the new basis.

  5. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Repeat steps 1 and 2 until the system is reduced to a single linear equation. ... the simplest of which are Gaussian elimination and GaussJordan elimination. The ...

  6. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    To quote: "It appears that Gauss and Doolittle applied the method [of elimination] only to symmetric equations. More recent authors, for example, Aitken, Banachiewicz, Dwyer, and Crout … have emphasized the use of the method, or variations of it, in connection with non-symmetric problems …

  7. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    The Schur complement arises when performing a block Gaussian elimination on the matrix M.In order to eliminate the elements below the block diagonal, one multiplies the matrix M by a block lower triangular matrix on the right as follows: = [] [] [] = [], where I p denotes a p×p identity matrix.

  8. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    GaussJordan elimination: solves systems of linear equations; Gauss–Seidel method: solves systems of linear equations iteratively; Levinson recursion: solves equation involving a Toeplitz matrix; Stone's method: also known as the strongly implicit procedure or SIP, is an algorithm for solving a sparse linear system of equations

  9. Discrete ordinates method - Wikipedia

    en.wikipedia.org/wiki/Discrete_Ordinates_Method

    It is possible to solve the resulting linear system directly with GaussJordan elimination, [2] but this is problematic due to the large memory requirement for storing the matrix of the linear system. Another way is to use iterative methods, where the required number of iterations for a given degree of accuracy depends on the strength of ...